
djet Documentation
Release 0.3-dev

Sunscrapers

Jul 29, 2021

Basics

1 Introduction 1
1.1 Installation . 1
1.2 Requirements . 1

2 Getting started 3
2.1 Testing views . 3
2.2 Assertions . 3
2.3 Testing file uploads . 4

3 Function Based Views 5

4 Class Based Views 7

5 Assertions 9

6 Files 11

7 Integration with DRF 13

8 Indices and tables 15

i

ii

CHAPTER 1

Introduction

Django Extended Tests is a set of helpers for easy testing of Django apps. Main features:

• easy unit testing of Django views (ViewTestCase)

• useful assertions provides as mixin classes:

– response status codes (StatusCodeAssertionsMixin)

– emails (EmailAssertionsMixin)

– messages (MessagesAssertionsMixin)

– model instances (InstanceAssertionsMixin)

• handy helpers for testing file-related code (InMemoryStorageMixin and others)

• smooth integration with Django REST Framework authentication mechanism (APIViewTestCase)

1.1 Installation

Simply install using pip:

$ pip install djet

1.2 Requirements

All of provided versions are validated via testing pipeline to ensure that they are supported:

• Python: 3.6+

• Django: 2.2, 3.1+

• Django REST Framework: 3.11+ (optional)

1

djet Documentation, Release 0.3-dev

2 Chapter 1. Introduction

CHAPTER 2

Getting started

Django test client performs integration tests. All middleware classes, resolvers, decorators and so on are tested. Just a
single failure in a middleware can break all the view tests.

One technique of performing the tests was presented at DjangoCon Europe 2013. We, at Sunscrapers have decided to
do it in slightly different way, which is why djet has been created.

2.1 Testing views

djet makes performing unit tests for your views easier by providing ViewTestCase. Instead of self.client,
you can use self.factory, which is an extended RequestFactory with overridden shortcuts for creating
requests (eg. path is not required parameter).

Sometimes you would need middleware to be applied in order to test the view. There is an option that helps specify
which middleware should be used in a single test or a whole test case by applying middleware_classes argument.
This argument should be a list of middleware classes (e.g. SessionMiddleware) or tuples where first argument is
middleware class and rest items are middleware types (from MiddlewareType class). In this case only indicated
middleware methods will be call.

2.2 Assertions

djet also provides additional assertions via mixin classes within djet.assertions module. They have
been created to simplify common testing scenarios and currently there is StatusCodeAssertionsMixin,
EmailAssertionsMixin, MessagesAssertionsMixin and InstanceAssertionsMixin full of use-
ful assertions.

Remember that if you want to use assertions e.g. from MessagesAssertionsMixin you must also add
middleware_classes required by messages to your test case. We do not add them for you in mixin, because
we believe those mixin classes shouldn’t implicitly mess with middleware, because it would make it harder to under-
stand what and why exactly is happening in your tests.

3

http://tech.novapost.fr/django-unit-test-your-views-en.html

djet Documentation, Release 0.3-dev

2.3 Testing file uploads

There are three primary issues, while testing file-related code in Django and djet.files module attempts to solve
all of these.

First thing - you won’t need any files put somewhere next to fixtures anymore. create_inmemory_file and
create_inmemory_image are ready to use. Those helpful functions are taken from great blog post by Piotr
Maliński with just a few small changes.

You can also use InMemoryStorage which deals with files being saved to disk during tests and speed ups tests by
keeping them in memory.

InMemoryStorageMixin does another great thing. It replaces DEFAULT_FILE_STORAGE with
InMemoryStorage for you and also removes all files after test tearDown, so you will no longer see any files
crossing between tests. You can also provide any storage you want, it should only implement clear method which is
invoked after tearDown. InMemoryStorageMixin cannot be used with bare unittest.TestCase - you have
to use TestCase from Django or ViewTestCase from djet.

4 Chapter 2. Getting started

http://www.rkblog.rk.edu.pl/w/p/temporary-files-django-tests-and-fly-file-manipulation/
http://www.rkblog.rk.edu.pl/w/p/temporary-files-django-tests-and-fly-file-manipulation/

CHAPTER 3

Function Based Views

If you want to test function-based view you should do it like this:

from djet import testcases

from fooapp.views import foo_view

class FooViewTest(testcases.ViewTestCase):
view_function = foo_view

def test_foo_view_get(self):
request = self.factory.get()
assertions for request

response = self.view(request)
assertions for response

5

djet Documentation, Release 0.3-dev

6 Chapter 3. Function Based Views

CHAPTER 4

Class Based Views

If you want to test class-based view you should do it like this:

from djet import testcases

from fooapp.views import foo_view

class FooViewTest(testcases.ViewTestCase):
view_class = foo_view

def test_foo_view_get(self):
request = self.factory.get()
assertions for request

response = self.view(request)
assertions for response

There is special create_view_object helper for testing single view methods, which applies the view_kwargs
specified to created view object. You can also provide request, args and kwargs here and they will be bounded to view,
like it normally happens in dispatch method.

You can always create view object with different kwargs by using self.view_class constructor.

class YourViewObjectMethodTest(testcases.ViewTestCase):
view_class = YourView
view_kwargs = {'redirect_url': '/'}

def test_some_view_method(self):
request = self.factory.get()
view_object = self.create_view_object(request, 'some arg', pk=1)

view_object.some_method()

self.assertTrue(view_object.some_method_called)

7

djet Documentation, Release 0.3-dev

8 Chapter 4. Class Based Views

CHAPTER 5

Assertions

We encourage you to import whole djet modules, not classes.

from djet import assertions, testcases
from django.contrib import messages
from django.contrib.messages.middleware import MessageMiddleware
from django.contrib.sessions.middleware import SessionMiddleware
from yourapp.views import YourView
from yourapp.factories import UserFactory

class YourViewTest(assertions.StatusCodeAssertionsMixin,
assertions.MessagesAssertionsMixin,
testcases.ViewTestCase):

view_class = YourView
view_kwargs = {'some_kwarg': 'value'}
middleware_classes = [

SessionMiddleware,
(MessageMiddleware, testcases.MiddlewareType.PROCESS_REQUEST),

]

def test_post_should_redirect_and_add_message_when_next_parameter(self):
request = self.factory.post(data={'next': '/'}, user=UserFactory())

response = self.view(request)

self.assert_redirect(response, '/')
self.assert_message_exists(request, messages.SUCCESS, 'Success!')

You can also make assertions about the lifetime of model instances. The assert_instance_created and
assert_instance_deleted methods of InstanceAssertionsMixin can be used as context managers.
They ensure that the code inside the with statement resulted in either creating or deleting a model instance.

from django.test import TestCase
from djet import assertions
from yourapp.models import YourModel

(continues on next page)

9

djet Documentation, Release 0.3-dev

(continued from previous page)

class YourModelTest(assertions.InstanceAssertionsMixin, TestCase):

def test_model_instance_is_created(self):
with self.assert_instance_created(YourModel, field='value'):

YourModel.objects.create(field='value')

10 Chapter 5. Assertions

CHAPTER 6

Files

An example of test using all files goodies from djet:

from djet import files
from django.core.files.storage import default_storage
from django.test.testcases import TestCase

class YourFilesTests(files.InMemoryStorageMixin, TestCase):

def test_creating_file(self):
created_file = files.create_inmemory_file('file.txt', 'Avada Kedavra')

default_storage.save('file.txt', created_file)

self.assertTrue(default_storage.exists('file.txt'))

11

djet Documentation, Release 0.3-dev

12 Chapter 6. Files

CHAPTER 7

Integration with DRF

Below there is an example of Django REST Framework authentication mocking. Pay attention to djet.
restframework.APIViewTestCase base class and user parameter in request factory call.

from django.contrib.auth import get_user_model
from djet import assertions, utils, restframework
import views

class SetUsernameViewTest(restframework.APIViewTestCase,
assertions.StatusCodeAssertionsMixin):

view_class = views.SetUsernameView

def test_post_should_set_new_username(self):
password = 'secret'
user = get_user_model().objects.create_user(username='john',

→˓password=password)
data = {

'new_username': 'ringo',
'current_password': password,

}
request = self.factory.post(user=user, data=data)

response = self.view(request)

self.assert_status_equal(response, status.HTTP_200_OK)
user.refresh_from_db()
self.assertEqual(data['new_username'], user.username)

For more comprehensive examples we recommend to check out how djoser library tests are crafted.

13

https://github.com/sunscrapers/djoser/blob/master/testproject/testapp/tests.py

djet Documentation, Release 0.3-dev

14 Chapter 7. Integration with DRF

CHAPTER 8

Indices and tables

• genindex

• search

15

	Introduction
	Installation
	Requirements

	Getting started
	Testing views
	Assertions
	Testing file uploads

	Function Based Views
	Class Based Views
	Assertions
	Files
	Integration with DRF
	Indices and tables

